Multicenter privacy-preserving Cox analysis based on homomorphic encryption
نویسندگان
چکیده
منابع مشابه
Privacy Preserving using Homomorphic Encryption
In the recent time, privacy preserving has been studied extensively, because of the extensive explosion of sensitive information. Privacy preserving is one of the important areas that aim to provide security for secret information from unsolicited or unsanctioned disclosure. This has triggered the development of much privacy preserving technique using encryption algorithm. This work will presen...
متن کاملPrivacy preserving biometrics using partially homomorphic encryption
We will look into privacy preserving biometrics using the example of a fingerprint reader and partially homomorphic encryption. Therefore we will cover the basics necessary to understand the discussed subject, partially homomorphic encryption and fingerprint based authentication, as well as showing a concrete protocol and its implications on performance and security of the system. While securit...
متن کاملPrivacy preserving record linkage using homomorphic encryption
The bloom filter method for privacy preserving record linkage [24] has been shown to be both efficient, and provide equivalent linkage quality to that achievable with unencoded identifiers [23]. However in some situations, the bloom filter method may be vulnerable to frequency attacks, which could potentially leak identifying information [18]. In this paper we extend the bloom filter protocol t...
متن کاملHomomorphic encryption-based secure SIFT for privacy-preserving feature extraction
Privacy has received much attention but is still largely ignored in the multimedia community. Consider a cloud computing scenario, where the server is resource-abundant and is capable of finishing the designated tasks, it is envisioned that secure media retrieval and search with privacy-preserving will be seriously treated. In view of the fact that scaleinvariant feature transform (SIFT) has be...
متن کاملPrivacy-Preserving Content-Based Recommendations through Homomorphic Encryption
By offering personalized content to users, recommender systems have become a vital tool in ecommerce and online media applications. Content-based algorithms recommend items or products to users, that are most similar to those previously purchased or consumed. Unfortunately, collecting and storing ratings, on which content-based methods rely, also poses a serious privacy risk for the customers: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Biomedical and Health Informatics
سال: 2021
ISSN: 2168-2194,2168-2208
DOI: 10.1109/jbhi.2021.3071270